чтобы найти площадь многоугольника нужно знать

Геометрия

План урока:

Площадь прямоугольного треугольника

Пусть в прямоугольном треугольнике известны два его катета. Обозначим их буквами а и b. Как тогда вычислить площадь такого треуг-ка?

Прямоугольный треугольник можно достроить до прямоугольника:

Площадь получившегося прямоугольника равна произведению чисел а и b. С другой стороны, прямоугольник состоит из двух треуг-ков площадью S, поэтому его общая площадь составляет 2S. Тогда можно записать, что

Задание. Катеты прямоугольного треугольника имеют длины 3 и 4. Определите его площадь.

Решение. Просто подставляем в формулу вместе букв a и b числа 3 и 4:

Задание. Площадь прямоугольного треугольника равна 100, а один катет больше другого вдвое. Найдите оба катета.

Решение. Пусть меньший катет равен х, тогда больший катет будет равен 2х. Выразим площадь прямоугольного треугольника через х:

Естественно, нас интересует только положительный корень, а отрицательный можно отбросить:

Меньший катет оказался равным 10, тогда больший катет, который вдвое больше, будет равен 20.

Задание. Найдите площадь фигуры, показанной на рисунке. Сторона каждой клеточки имеет длину, равную единице:

Решение. Эту фигуру можно разбить на квадрат со стороной 8 и два прямоугольных треуг-ка, то есть всего на три фигуры:

Подсчитаем площадь каждой из трех фигур по отдельности:

Чтобы найти площадь всей фигуры, достаточно просто сложить три полученных числа:

Задание. Вычислите площадь треуг-ка, изображенного на рисунке (площадь каждой отдельной клеточки составляет единицу):

Решение. Здесь проблема заключается в том, что треуг-к прямоугольным не является. Однако можно построить прямоуг-к, который будет состоять сразу из 4 треуг-ков:

Мы можем найти как площадь всего прямоугольника (обозначим ее как S), так и площади трех прямоугольных треуг-ков S1, S2 и S3:

Площадь произвольного треугольника

Перейдем к более сложному случаю, когда необходимо подсчитать площадь произвольного треугольника, не являющегося прямоугольным. Предположим, надо найти площадь произвольного ∆АВС. Опустим из А на сторону ВС высоту АН:

В результате мы получили два прямоугольных треуг-ка, ∆АВН и ∆АCН. Мы уже знаем, как найти их площади:

Общая площадь всего ∆АВС равна сумме площадей ∆АВН и ∆АСН. Запишем ее и вынесем общий множитель АН/2 за скобки:

В скобках стоит сумма ВН + НС. Но ведь эта сумма равна длине стороны ВС! Тогда окончательно формулу можно записать в виде:

Получили, что для вычисления площади произвольного треугольника надо сначала умножить его высоту на сторону, на которую она падает, а далее поделить результат на 2. Однако для полного доказательства этого факта надо рассмотреть особый случай, когда высота в треуг-ке падает не на сторону, а на ее продолжение (такая ситуация возникает в тупоугольном треуг-ке):

На рисунке снова получились всё те же прямоугольные треуг-ки ∆АСН и ∆АВН. Запишем формулы их площади:

Отличие в том, что на этот раз площадь АВС можно вычислить не как сумму, а как разницу этих площадей:

Итак, можно сформулировать следующее правило:

Примечание. Часто сторону, на которую опущена высота, называют основанием треуг-ка.

Задание. Вычислите площадь ∆АВС, если сторона АВ имеет длину 7, а высота СН равна 4.

Решение. В данной задаче на сторону длиной 7 падает высота длиной 4. Надо просто подставить эти числа в формулу:

Задание. Докажите, что медиана треуг-ка разбивает его на два равновеликих треуг-ка.

Пусть в ∆АВС проведена медиана СМ. Требуется доказать, что

Важно заметить, что СН будет являться высотой не только для ∆АВС, но также и для ∆СВМ и ∆САМ. Обозначим СН как h, а АВ как а. Тогда мы можем найти длины отрезков ВМ и АМ, ведь медиана делит сторону АВ пополам:

Получили одно и то же значение, то есть площади треуг-ков равны.

В рассмотренной задаче мы использовали тот факт, что у нескольких треуг-ков может быть общая высота. Общая высота используется и в многих других геометрических задачах.

Задание. Предложите способ, как разделить треуг-к, показанный на рисунке, на три равновеликих треуг-ка:

Чтобы треуг-ки были равновелики, достаточно, чтобы у них была общая высота, а основания, на которые эта высота падает, были бы равны друг другу. Поэтому можно просто поделить нижнюю сторону на три одинаковых отрезка (длиной по 7 клеток) и соединить концы полученных отрезков с противоположной вершиной:

Красной линией здесь показаны границы треуг-ков, а штриховой – их общая высота СН. Вычислить площадь каждого из треуг-ков можно по следующим формулам:

Но отрезки BD, DE и EA одинаковы (по 7 клеточек), поэтому одинаковы будут и площади:

Заметим, что необязательно делить на три одинаковых отрезка именно нижнюю сторону. Допустимы и два других варианта решения:

Но и это не единственные решения задачи. Попробуйте самостоятельно предложить ещё несколько вариантов.

Формула площади треуг-ка показывает, что между длинами высот и сторон есть взаимосвязь.

Задание.В ∆РЕТ РЕ = 72, ЕТ = 45. Высота ТН имеет длину 40. Найдите высоту РМ.

Зная ТН и РЕ, мы сможем найти площадь треуг-ка:

Теперь запишем эту формулу площади в ином виде, когда используется высота МР и сторона ЕТ

Величину SРЕТ мы только что вычислили, а длина ЕТ известна из условия, поэтому можно подставить их в формулу:

Площадь параллелограмма

Для вычисления площади параллелограмма введем понятие «высота параллелограмма». Так называют перпендикуляр, опущенный на сторону параллелограмма (ее в такой ситуации часто называют основанием) из одной из вершин параллелограмма. Важно понимать, что высоты могут упасть не на само основание, а на его продолжение. Так как у каждого параллелограмма есть 4 вершины, а из каждой из них можно опустить высоту на две противоположных вершины, то всего у параллелограмма должно быть 8 высот:

На рисунке синим показаны высоты параллелограмма, а красным цветом отмечены продолжения оснований. Оказывается, что площадь параллелограмма равна произведению его высоты и основания, на которую она опущена. Докажем это.

Опустим в параллелограмме АВСD высоты ВН и СК:

В результате получили четырехуг-к ВНКС, который является прямоугольником, ведь все его углы прямые. Очевидно, что ∆АВН и ∆DCK равные. Это можно доказать тем, что они являются прямоугольными, у них есть одинаковые гипотенузы АВ и CD (они равны как противоположные стороны параллелограмма) и одинаковые катеты ВН и СК (это уже противоположные стороны прямоугольника ВНКС).

Раз они равны, то одинаковы и их площади:

Но величину S3 можно заменить на S2. В свою очередь полученная сумма равна площади прямоугольника ВНКС, которая может быть вычислена как произведение его смежных сторон:

Но ВН – это высота, а НК – основание параллелограмма. То есть мы доказали следующее утверждение:

Задание. Найдите площадь параллелограмма, изображенного на рисунке:

Решение. По рисунке несложно определить длину как основания, так и высоты параллелограмма:

Далее надо просто перемножить эти длины:

Примечание. Конечно, если вы вдруг забыли формулу площади параллелограмма, можно просто разделить его на прямоугольник и два прямоугольных треуг-ка:

Дальше можно просто посчитать по отдельности S1, S2и S3, после чего сложить их. Попробуйте сделать это самостоятельно.

Задание. Площадь параллелограмма равна 162 см 2 , а одна из его высот вдвое короче основания, к которому она проведена. Найдите эту высоту и основание.

Решение. В данной задаче не потребуется даже рисунок. Обозначим высоту буквой h, тогда основание, которое вдвое длиннее, составляет 2h. Произведение этих чисел – это площадь, то есть оно равно 162:

Высота равна 9, а основание будет вдвое больше, то есть его длина равна 18.

Задание. Смежные стороны параллелограмма ABCD имеют длину 12 и 14 см, а угол между ними равен 30°. Вычислите его площадь.

Решение. Опустим на сторону длиной 14 см высоту:

Для вычисления площади надо сначала найти высоту ВН. Её можно определить из ∆АВН. Он является прямоугольным, а его острый угол∠А = 30°. У такого треуг-ка катет, лежащий против 30°, вдвое меньше АВ:

Площадь ромба

Многие четырехуг-ки, изученные нами ранее, являются частными случаями параллелограмма. Для прямоугольника и квадрата мы уже знаем формулы вычисления площади. Осталось разобраться с ромбом. Ясно, что его площадь можно найти также, как и у параллелограмма. Однако площадь ромба можно посчитать и зная только его диагонали.

Построим ромб и проведем в нем диагонали:

Нам уже известно, что диагонали ромба пересекаются под прямым углом, а точка их пересечения является серединой для каждой диагонали:

Получается, что диагонали разбивают ромб на 4 одинаковых прямоугольных треуг-ка. Высчитаем, к примеру, SAOB:

В результате мы доказали следующее утверждение:

Задание. Одна диагональ ромба равна 3,2 дм, а другая составляет 14 см. Найдите его площадь.

Решение. Для начала надо перевести все длины в одинаковые единицы измерения. Заменим дециметры на сантиметры:

Задание. Одна диагональ ромба в три раза длиннее другой, а площадь фигуры составляет 150. Вычислите длину диагоналей ромба.

Решение. Обозначим меньшую диагональ как х, тогда вторая будет равна 3х. Выразим площадь через х:

Вторая диагональ ромба будет втрое длиннее, то есть ее длина равна 3•10 = 30

Ответ: 10 и 30 см.

Площадь трапеции

Осталось рассмотреть единственный известный нам вид четырехуг-ка, который не является параллелограммом. Это трапеция. Для вычисления ее площади также потребуется высота. Под ней подразумевают перпендикуляр, опущенный из вершины трапеции на одно из ее оснований. Другими словами, высота трапеции – это расстояние между основаниями трапеции.

В произвольной трапеции ABCD, где АD – большее основание, опустим из В высоту (то есть перпендикуляр) на AD, а из D– высоту на ВС. Также проведем диагональ ВD:

Ясно, что общая площадь трапеции будет равна сумме площадей ∆АВDи ∆ВСD. В свою очередь площадь каждого из них можно подсчитать по стороне и опущенной на нее высоте. Высоты мы как раз и провели, это ВН и DK, поэтому можно записать:

Теперь заметим, что отрезки ВН и КD одинаковы, ведь фигура ВНDК является прямоугольником. Тогда площадь ∆ВСD можно записать в таком виде:

В итоге мы доказали, что для вычисления площади трапеции следует ее высоту умножить на сумму длин оснований, после чего поделить результат на два. Обычно этот факт записывают следующим образом:

Задание. У трапеции АВСD основаниями являются АВ (21 см) и CD (17 см). Высота ВН составляет 7 см. Найдите площадь трапеции.

Решение. Это простая задача на использование формулы площади трапеции:

Задание. Найдите площадь прямоугольной трапеции, показанной на рисунке (площадь клеточки равна единице):

Решение. На рисунке показана прямоугольная трапеция. Её высота равна длине ее правой боковой стороны трапеции. Покажем размеры, необходимые нам для выполнения расчета:

Задание. Тупой угол равнобедренной трапеции составляет 135°. Проведенная из этого угла высота делит противолежащее основание на отрезки длиной 14 и 34 см. Какова площадь трапеции?

Решение. Выполним построение:

Найдем острый угол трапеции. Так как CD||АВ, то

Рассмотрим ∆АDH. Он прямоугольный, а один из его острых углов равен 45°. Тогда и второй острый угол также равен 45°. То есть это равнобедренный треуг-к. Это помогает найти длину высоты DH:

ведь это прямоугольныетреуг-ки с равными гипотенузой и катетом:

Из равенства треуг-ков следует, что

Итак, сегодня мы узнали, как вычислять площади треуг-ков и некоторых видов четырехуг-ков. В большинстве случаев предварительно необходимо найти высоту в многоугольнике. В будущем мы узнаем ещё несколько формул для вычисления площадей фигур.

Многоугольник — определение и вычисление с примерами решения

Содержание:

Изучив материал этой лекции, вы узнаете формулу, с помощью которой можно найти сумму углов выпуклого многоугольника.

  • Вы расширите свои представления о такой знакомой вам величине, как площадь.
  • Вы научитесь находить площадь параллелограмма, треугольника, трапеции.

Определение многоугольников

Рассмотрим фигуру, состоящую из точек

Фигура, образованная этими отрезками, ограничивает часть плоскости, выделенную на рисунке 195 зеленым цветом. Эту часть плоскости вместе с отрезками называют многоугольником. Точки называют вершинами многоугольника, а указанные выше отрезки — сторонами многоугольника.

Стороны, являющиеся соседними отрезками, называют соседними сторонами многоугольника. Вершины, являющиеся концами одной стороны, называют соседними вершинами многоугольника.

Две соседние стороны многоугольника образуют угол многоугольника. Например, на рисунке 196 — углы многоугольника, а не является углом многоугольника.

Многоугольник называют по количеству его углов: треугольник, четырехугольник, пятиугольник и т. п.

Многоугольник обозначают по его вершинам. Например, на рисунке 197 изображен пятиугольник ABCDE. В обозначении многоугольника буквы, стоящие рядом, соответствуют соседним вершинам. Например, пятиугольник, изображенный на рисунке 197, можно обозначить еще и так: CDEAB, EABCD, EDCBA и т. д.

Периметром многоугольника называют сумму длин всех его сторон.

Отрезок, соединяющий несоседние вершины многоугольника, называют диагональю. Например, на рисунке 198 отрезок АЕ — диагональ шестиугольника ABCDEF.

На рисунке 199 изображен многоугольник, все углы которого меньше развернутого. Такой многоугольник называют выпуклым. Из сказанного следует, что любой треугольник является выпуклым многоугольником. Заметим, что многоугольники, изображенные на рисунках 196-198, не являются выпуклыми.

Выпуклый многоугольник обладает такими свойствами:

  1. выпуклый многоугольник расположен в одной полуплоскости относительно любой прямой, содержащей его сторону (рис. 200);
  2. выпуклый многоугольник, отличный от треугольника, содержит любую свою диагональ (рис. 201).

Если многоугольник не является выпуклым, то он такими свойствами не обладает (рис. 198, 202).

Теорема 19.1. Сумма углов выпуклого n-угольника равна

Доказательство. Для случая n = 3 теорема была доказана в 7 классе (теорема 16.1).

Пусть На рисунке 203 изображен выпуклый n-угольник

Докажем, что сумма всех его углов равна 180° (n-2).

Проведем все его диагонали, выходящие из вершины Эти диагонали разбивают данный многоугольник на (n — 2) треугольника. Сумма всех углов этих треугольников равна сумме углов n-угольника. Поскольку сумма углов каждого треугольника равна 180°, то искомая сумма равна 180° (n — 2).

Отметим, что эта теорема справедлива и для любого многоугольника, не являющегося выпуклым.

Определение. Окружность называют описанной около многоугольника, если она проходит через все его вершины.

На рисунке 204 изображена окружность, описанная около многоугольника. В этом случае также говорят, что многоугольник вписан в окружность.

Центр окружности, описанной около многоугольника, равноудален от всех его вершин. Следовательно, этот центр принадлежит серединным перпендикулярам всех сторон многоугольника, вписанного в окружность.

Около многоугольника можно описать окружность, если существует точка, равноудаленная от всех его вершин. Следовательно, если серединные перпендикуляры всех сторон многоугольника пересекаются в одной точке, то около такого многоугольника можно описать окружность.

Определение. Окружность называют вписанной в многоугольник, если она касается всех его сторон.

На рисунке 205 изображена окружность, вписанная в многоугольник. В этом случае также говорят, что многоугольник описан около окружности.

Центр окружности, вписанной в многоугольник, равноудален от всех его сторон. Следовательно, этот центр принадлежит биссектрисам всех углов многоугольника, описанного около окружности.

Понятие площади многоугольника. Площадь прямоугольника

С такой величиной, как площадь, вы часто встречаетесь в повседневной жизни: площадь квартиры, площадь дачного участка, площадь поля и т. п.

Опыт подсказывает вам, что равные земельные участки имеют равные площади, что площадь квартиры равна сумме площадей всех ее помещений (комнат, кухни, коридора и т. д.).

Вы знаете, что площади земельных участков измеряют в сотках (арах) и гектарах; площади регионов и государств — в квадратных километрах; площадь квартиры — в квадратных метрах.

На этих практических знаниях о площади основывается определение площади многоугольника.

Определение. Площадью многоугольника называют положительную величину, которая обладает следующими свойствами:

  1. равные многоугольники имеют равные площади;
  2. если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников;
  3. за единицу измерения площади принимают единичный квадрат, то есть квадрат со стороной, равной единице измерения длины.

Измерить площадь многоугольника — это значит сравнить его площадь с площадью единичного квадрата. В результате получают числовое значение площади данного многоугольника. Это число показывает, во сколько раз площадь данного многоугольника отличается от площади единичного квадрата.

Например, если клетку вашей тетради принять за единичный квадрат, то площадь многоугольника, изображенного на рисунке 207, будет равна 11 квадратным единицам (кратко записывают: 11 ед. 2 ).

Обычно для нахождения площади используют формулы, то есть вычисляют площадь многоугольника по определенным элементам (сторонам, диагоналям, высотам и т. д.). Некоторые из формул вы уже знаете. Например, вы неоднократно применяли формулу S = ab, где S — площадь прямоугольника, а и b — длины его соседних сторон.

Для доказательства этой формулы потребуется следующая лемма.
Лемма. Площадь квадрата со стороной ед. (n — натуральное число) равна

Доказательство. Рассмотрим единичный квадрат и разделим его на равных квадратов со стороной (рис. 208).
Из определения площади многоугольника (свойство 1) следует, что все эти квадраты имеют равные площади. По свойству 2 сумма площадей этих квадратов равна площади единичного квадрата, то есть 1 ед. 2 . Поэтому площадь каждого маленького квадрата равна

Теорема 20.1. Площадь прямоугольника равна произведению длин его соседних сторон.

Доказательство. На рисунке 209 изображен прямоугольник ABCD, длины соседних сторон которого равны a и b: АВ = а, ВС = b. Докажем для случая, когда а и b — рациональные числа, что площадь S прямоугольника вычисляют по формуле S = ab.

Числа а и b представим в виде обыкновенных дробей с одинаковыми знаменателями:
где — натуральные числа.
Разделим сторону АВ на р равных частей, а сторону ВС — на q равных частей. Через точки деления проведем прямые, параллельные сторонам прямоугольника. Тогда прямоугольник будет разделен на равных квадратов со стороной

Согласно лемме площадь каждого квадрата равна Из определения площади (свойство 2) следует, что площадь прямоугольника равна сумме площадей всех квадратов, то есть
Рассмотрение случая, когда хотя бы одно из чисел а или b является иррациональным, выходит за рамки школьного курса геометрии.

Определение. Многоугольники, имеющие равные площади, называют равновеликими.

Из определения площади (свойство 1) следует, что все равные фигуры равновелики. Однако не все фигуры, имеющие равные площади, являются равными. Например, на рисунке 210 изображены два многоугольника, каждый из которых составлен из семи единичных квадратов. Эти многоугольники равновелики, но не равны.

Площадь параллелограмма

Теорема 21.1. Площадь параллелограмма равна произведению его стороны и высоты, проведенной к этой стороне.

Доказательство. На рисунке 214 изображены параллелограмм ABCD, площадь которого равна S, и его высота ВМ. Докажем, что S = ВС • ВМ.

Проведем высоту CN. Легко показать (сделайте это самостоятельно), что четырехугольник MBCN — прямоугольник. Покажем, что он равновелик данному параллелограмму.

Площадь параллелограмма равна сумме площадей треугольника АВМ и трапеции MBCD. Площадь прямоугольника равна сумме площадей указанной трапеции и треугольника DCN. Однако треугольники АВМ и DCN равны по гипотенузе и острому углу (отрезки АВ и CD равны как противолежащие стороны параллелограмма, углы 1 и 2 равны как соответственные при параллельных прямых АВ и DC и секущей AD). Значит, эти треугольники равновелики. Отсюда следует, что параллелограмм ABCD и прямоугольник MBCN равновелики.

По теореме 20.1 площадь прямоугольника MBCN равна произведению длин сторон ВС и ВМ. Тогда S = ВС • ВМ, где S — площадь параллелограмма ABCD.

Для завершения доказательства надо рассмотреть случаи, когда основание М высоты ВМ не будет принадлежать стороне AD (рис. 215) или совпадет с вершиной D (рис. 216). И в этом случае параллелограмм ABCD и прямоугольник MBCN будут равновеликими. Докажите этот факт самостоятельно.

Если обозначить длины стороны параллелограмма и проведенной к ней высоты соответственно буквами а и h, то площадь S параллелограмма вычисляют по формуле

Площадь треугольника

Теорема 22.1. Площадь треугольника равна половине произведения его стороны и проведенной к ней высоты.

Доказательство. На рисунке 220 изображены треугольник АВС, площадь которого равна S, и его высота ВМ. Докажем, что
Через вершины В и С треугольника проведем прямые, параллельные сторонам АС и АВ соответственно (рис. 220). Пусть эти прямые пересекаются в точке N. Четырехугольник ABNC — параллелограмм по определению. Треугольники АВС и NCB равны (докажите это самостоятельно). Следовательно, равны и их площади. Тогда площадь треугольника АВС равна половине площади параллелограмма ABNC. Высота ВМ треугольника АВС является также высотой параллелограмма
ABNC. Отсюда

Если воспользоваться обозначениями для высот и сторон треугольника АВС, то согласно доказанной теореме имеем:

где S — площадь треугольника.

Следствие. Площадь прямоугольного треугольника равна половине произведения его катетов.

Докажите эту теорему самостоятельно.

Пример №1

Докажите, что площадь ромба равна половине произведения его диагоналей.

Решение:

На рисунке 221 изображен ромб ABCD, площадь которого равна S. Его диагонали АС и BD пересекаются в точке О. Докажем, что
Поскольку диагонали ромба перпендикулярны, то отрезки АО и СО являются высотами треугольников BAD и BCD соответственно. Тогда можно записать:

Площадь трапеции

Теорема 23.1. Площадь трапеции равна произведению полусуммы ее оснований и высоты.

Доказательство. На рисунке 224 изображена трапеция ABCD (AD||BC), площадь которой равна S. Отрезок CN — высота этой трапеции. Докажем, что

Проведем диагональ АС и высоту AM трапеции. Отрезки AM и CN являются высотами треугольников АВС и ACD соответственно.

Имеем:

Если обозначить длины оснований трапеции и ее высоты соответственно буквами то площадь S трапеции вычисляют по формуле

Следствие. Площадь трапеции равна произведению ее средней линии и высоты.

Равносоставленные и равновеликие многоугольники

Если некоторый многоугольник можно разрезать на части и составить из них другой многоугольник, то такие два многоугольника называют равносоставленными.

Например, если прямоугольник разрезать вдоль его диагонали (рис. 228), то получим два равных прямоугольных треугольника, из которых можно составить равнобедренный треугольник (рис. 229). Фигуры на рисунках 228 и 229 — равно составленные.

Очевидно, что равносоставленные многоугольники являются равновеликими. Этот факт применяют при доказательстве теорем и решении задач. Например, доказывая теорему 21.1, мы фактически разрезали параллелограмм на треугольник АВМ и трапецию MBCD, из которых составили прямоугольник MBCN (см. рис. 215).

Если треугольник разрезать вдоль средней линии, то из полученных треугольника и трапеции можно составить параллелограмм (рис. 230).

Легко установить (сделайте это самостоятельно), что такое разрезание треугольника приводит к еще одному доказательству теоремы о площади треугольника (теорема 22.1). Этой же цели служит разрезание треугольника на части, из которых можно составить прямоугольник (рис. 231).

Евклид в своей знаменитой книге «Начала» формулирует теорему Пифагора так:

«Площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах».

Если показать, что можно разрезать квадраты, построенные на катетах, на части и составить из этих частей квадрат со стороной, равной гипотенузе, то тем самым будет доказана теорема Пифагора.

На рисунке 232 показан один из возможных способов такого разрезания. Квадраты, построенные на катетах, разрезаны на части, площади которых равны Из этих частей сложен квадрат, построенный на гипотенузе.

Из определения площади многоугольника следует, что равносоставленные многоугольники являются равновеликими. Но совсем неочевидной является такая теорема.

Теорема. Любые два равновеликих многоугольника являются равносоставленными.

Впервые этот факт доказал в 1832 г. венгерский математик Фаркаш Бойяи. Позднее немецкий математик Пауль Гервин нашел другое доказательство. Поэтому эту теорему называют теоремой Бойяи—Гервина.

Теорема Чевы

На сторонах ВС, СА и АВ треугольника АВС отметим произвольные точки (рис. 234). Каждый из отрезков АЛ,, BBV СС, называют чевианой треугольника АВС. Такое название связано с именем итальянского инженера и математика Джованни Чевы (1648-1734), открывшего удивительную теорему.

Если точки выбраны так, что чевианы являются биссектрисами, либо медианами, либо высотами остроугольного треугольника, то эти чевианы пересекаются в одной точке.

Если три прямые пересекаются в одной точке, то их называют конкурентными.

Теорема Чевы дает общий критерий конкурентности произвольных трех чевиан.

Теорема. Для того чтобы, чевианы треугольника АВС пересекались в одной точке, необходимо и достаточно, чтобы выполнялось равенство


Доказательство. Докажем сначала необходимое условие конкурентности: если чевианы пересекаются в одной точке, то выполняется равенство (*).

Воспользовавшись результатом ключевой задачи 757, можно записать (рис. 235):

Перемножив записанные равенства, получим равенство (*).

Докажем теперь достаточное условие конкурентности: если выполняется равенство (*), то чевианы пересекаются в одной точке.

Пусть чевианы пересекаются в точке D, а чевиана, проходящая через вершину С и точку D, пересекает сторону АВ в некоторой точке Из доказанного выше можно записать:

Сопоставляя это равенство с равенством (*), приходим к выводу, что то есть точки делят отрезок АВ в одном и том же отношении, а значит, эти точки совпадают. Следовательно, прямая CD пересекает сторону АВ в точке

Напомню:

Сумма углов выпуклого n-угольника
Сумма углов выпуклого n-угольника равна 180° (n — 2).

Окружность, описанная около многоугольника
Окружность называют описанной около многоугольника, если она проходит через все его вершины.

Окружность, вписанная в многоугольник
Окружность называют вписанной в многоугольник, если она касается всех его сторон.

Площадь многоугольника
Площадью многоугольника называют положительную величину,
которая обладает следующими свойствами:

  1. равные многоугольники имеют равные площади;
  2. если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников;
  3. за единицу измерения площади принимают единичный квадрат, то есть квадрат со стороной, равной единице измерения длины.

Площадь прямоугольника
Площадь прямоугольника равна произведению длин его соседних сторон.

Равновеликие многоугольники
Многоугольники, имеющие равные площади, называют равновеликими.

Площадь параллелограмма
Площадь параллелограмма равна произведению его стороны и высоты, проведенной к этой стороне.

Площадь треугольника
Площадь треугольника равна половине произведения его стороны и проведенной к ней высоты.

Площадь прямоугольного треугольника
Площадь прямоугольного треугольника равна половине произведения его катетов.

Площадь трапеции

  • Площадь трапеции равна произведению полусуммы ее оснований и высоты.
  • Площадь трапеции равна произведению ее средней линии и высоты.

Ломанная линия и многоугольники

Ломаная линия состоит из таких нескольких последовательно-соединенных отрезков: конец первого является началом второго, конец второго является началом третьего и т.д. Если конечная точка последнего отрезка совпадает с начальной точкой первого отрезка, то ломаная называется замкнутой. Многоугольник — это фигура, образованная замкнутой ломаной линией, в которой смежные отрезки не лежат на одной прямой, а несмежные — не пересекаются.

  • Многоугольник — это плоская фигура.
  • Стороны состоят из конечного числа отрезков.
  • Многоугольник это замкнутая фигура, делящая плоскость на 2 части: внутреннюю замкнутую область и внешнюю бесконечную область.
  • Многоугольник обозначают буквами, указывающими его вершины.

Многоугольники бывают выпуклые и вогнутые. Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой содержащей его сторону. Если не лежит в одной полуплоскости — вогнутым.

Многоугольник называется правильным, если у него все стороны все углы конгруэнтны.

В многоугольнике количество вершин, сторон и углов одинаковые. Многоугольник с — сторонами называют еще и — угольным.

Соответственно количеству сторон, многоугольники называются треугольными, четырехугольными, пятиугольными, шестиугольными т.д. Из любой вершины выпуклого — угольника выходят диагонали.

Внутренние и внешние углы многоугольника

Угол, образованный двумя сторонами, исходящими из данной вершины называется внутренним углом при данной’ вершине выпуклого многоугольника. Угол, смежный с внутренним углом многоугольника называется внешним. Сумма внутренних и внешних углов (взятых по одному при каждой вершине) многоугольника при любой вершине равна .

Теорема 1. Сумма внутренних углов выкуплого — угольника равна .

Следствие: Каждый внутренний угол правильного — угольника равен

Теорема 2. Сумма внешних углов выкуплого многоугольника равен .

Следствие 2. Каждый внешний угол правильного — угольника равен .

Пример №2

Один из внешних углов правильного многоугольника равен .

a) найдите градусную меру внутреннего угла многоугольника;

b) найдите число сторон многоугольника.

Решение: а) ;

Внутренний угол:

b)

Многоугольники вписанные в окружность и описанные около окружности

Определение 1. Многоугольник называется вписанным в окружность, если все его вершины лежат на окружности, а окружность называется описанной около многоугольника. На рисунке треугольник вписан в окружность.

Определение 2. Многоугольник называется описанным около окружности, если все его стороны касаются окружности, а окружность называется вписанной в многоугольник. На рисунке четырехугольник описан около окружности.

Окружность, вписанная в треугольник и описанная около нее

Теорема 1. В любой треугольник можно вписать окружность. Центром этой окружности будет точка пересечения биссектрис углов треугольника.

Теорема 2. Около любого треугольника можно описать окружность. Центром этой окружности будет точка пересечения серединных перпендикуляров к сторонам треугольника.

Теорема 3. Если в окружность вписан прямоугольный треугольник, то гипотенуза является диаметром этой окружности.

Обратная теорема. Если сторона треугольника, вписанного в окружность, является диаметром, то этот треугольник — прямоугольный.

Доказательство 1-ой теоремы (текстовое). Проведем биссектрисы углов и треугольника и точку пересечения обозначим буквой . Произвольная точка, взятая на биссектрисе находится на одинаковом расстоянии от сторон угла. Поэтому Точка находится и на биссектрисе угла (почему?). Нарисуем окружность с центром в точке и радиусом Так как стороны треугольника перпендикулярны радиусам то в точках они касаются окружности. А значит, эта окружность является вписанной в треугольник.

Доказательство 2-ой теоремы. Через середины сторон и треугольника проведем перпендикуляры и точку их пересечения обозначим буквой . По свойству серединного перпендикуляра к отрезку . Так как равнобедренный, то точка находится и на серединном перпендикуляре стороны . Окружность с центром в точке и радиусом , пройдя через все вершины треугольника, будет описанной около нее.

Замечание: Около данного треугольника можно описать только одну окружность. В данную окружность можно вписать бесконечное количество треугольников.

Свойства четырехугольников, вписанных в окружность и описанного около нее

В отличие от треугольников, не во всякий четырехугольник можно вписать или описать окружность.

Теорема 4. В любом описанном четырехугольнике суммы противоположных сторон равны.

Обратная теорема. Если суммы противоположных сторон четырехугольника равны, то в этот четырехугольник можно вписать окружность.

Теорема 5. Сумма двух противоположных углов четырехугольника, вписанного в окружность, равна

Обратная теорема. Если сумма противоположных углов четырехугольника равна , то около этого четырехугольника можно описать окружность.

Доказательство теоремы 4: Пусть точки будут точками касания сторон четырехугольника. По свойству касательных, проведенных из данной точки к окружности,

Если сложить почленно эти равенства, получим или же

Отношение стороны треугольника, вписанного в окружность, к синусу противолежащего угла равно диаметру этой окружности:

Исследуйте данное доказательство для случая, когда центр окружности расположен внутри треугольника, обсудите и напишите в тетради.

В любой правильный многоугольник можно вписать и описать окружность. Центры этих окружностей совпадут. Биссектрисы углов правильного многоугольника пересекаются в точке и образуют равнобедренные треугольники конгруэнтные показанному на рисунке (по признаку УСУ). Нарисуем окружность радиусом с центром в точке . Эта окружность, пройдя через все вершины, будет описанной окружностью. окружность с радиусом , касаясь всех сторон многоугольника, будет вписанной окружностью. — радиус окружности, описанной около правильного -угольника, -радиус вписанной окружности, -сторона правильного -угольника, — центральный угол

Задача на построение: Постройте правильный шестиугольник.

1. Нарисуйте отрезок , равный стороне правильного шестиугольника.

2. Циркулем нарисуйте окружность, радиус которой равен длине этого отрезка.

3. Не меняя раствора циркуля, разбейте всю окружность на части одинаковой длины и отметьте их точками.

4. Соедините последовательно отмеченные точки. Получится правильный шестиугольник, вписанный в окружность.

Если соединить попарно некоторые вершины правильного шестиугольника , например, вершины , то получится правильный треугольник. Чтобы построить правильный четырехугольник, нужно провести два взаимно перпендикулярных диаметра и последовательно соединить их концы. Если в окружность вписан правильный — угольник, то отметив точки пересечения серединных перпендикуляров с окружностью, получим точки являющиеся вершинами правильного -угольника.

Площадь правильного многоугольника

Центр правильного многоугольника. Центр окружности, описанного около правильного многоугольника или вписанного в него, является центром правильного многоугольника. Центр правильного многоугольника находится на одинаковом расстоянии от всех вершин и всех сторон многоугольника.

Апофема правильного многоугольника. Перпендикуляр, проведенный из центра многоугольника к его стороне, называется апофемой. Апофема правильного многоугольника равна радиусу вписанной окружности.

Выполните следующее упражнение по шагам и выведите формулу зависимости площади правильного многоугольника от апофемы.

1. Нарисуйте правильный пятиугольник .

2. Из центра проведите перпендикуляр, делящий сторону пополам.

3. Соедините точки и с центром .

4. Выразите площадь треугольника переменными и . Обратите внимание какому измерению многоугольника соответствует высота треугольника.

5. Соедините точки с точкой . Сравните площади полученных треугольников.

6. Обратите внимание на то, что площадь пятиугольника равна сумме площадей этих треугольников. Площадь пятиугольника:

7. Какому измерению соответствует выражение ? Выразите площадь пятиугольника через его периметр.

Площадь правильного многоугольника:

Соединив центр правильного -угольника с вершинами, получится количество равнобедренных конгруэнтных треугольников.

-длина стороны многоугольника , -число сторон, -апофема.

Пример №3

В окружность радиусом равным единице, вписан правильный пятиугольник. Найдите площадь пятиугольника. Решение:

Площадь многоугольника:

Нужно найти апофему и периметр .

Центральный угол равен . — равнобедренный треугольник, а значит его высота является и медианой, и биссектрисой.

Тогда . Чтобы найти стороны треугольника , воспользуемся тригонометрическими соотношениями .

— апофема пятиугольника,

Сторона пятиугольника:

Историческое сведение. В 3-ем веке до н.э. Архимед — древнегреческий ученый, для того, чтобы определить численное значение , воспользовался периметрами правильных; многоугольников описанных и вписанных в окружность. Пользуясь данным способом исследуйте значение .

1. Принимая за единицу диаметр окружности, найдите периметр вписанного шестиугольника.

2. Покажите, что длина окружности с единичным диаметром равна .

3. Нарисуйте радиус окружности. Найдите периметр описанного шестиугольника.

4. Напишите неравенство: .

Увеличив число сторон многоугольника в 2 раза и продолжая вычисления для 12-ти, а затем для 96-ти угольного многоугольника Архимед, определил, что значения больше , но меньше .

Паркетирование

Паркетированием называется покрытие площади фигурами до заполнения всей пустоты.

Если сумма углов при общей вершине многоугольника равна , то паркетированием можно покрыть всю пустую часть площади. Паркетирование возможно при помощи правильных треугольников, ромбов (квадратов) и правильных шестиугольников. Однако, при помощи правильных пятиугольников это сделать невозможно, потому что, градусная мера одного угла равна , а сумма углов при общей вершине трех пятиугольников , а четырех пятиугольников .

Справочный материал по многоугольникам

Многоугольник и его элементы.

Сумма углов выпуклого многоугольника. многоугольник, вписанный в окружность, и многоугольник, описанный около окружности.

Рассмотрим фигуру изображенную на рисунке 213. Она состоит из отрезков и При этом отрезки размещены так, что соседние отрезки ( и и и ) не лежат на одной прямой, а несоседние отрезки не имеют общих точек. Такую фигуру называют многоугольником. Точки называют вершинами многоугольника, а отрезки сторонами многоугольника.

Очевидно, что количество вершин многоугольника равно количеству его сторон.

Сумму длин всех сторон многоугольника называют его периметром.

Наименьшее количество вершин (сторон) у многоугольника — три. В этом случае имеем треугольник. Еще одним отдельным видом многоугольника является четырехугольник.

Многоугольник, у которого вершин, называют угольником. На рисунке 213 изображен шестиугольник

Две стороны многоугольника называют соседними, если они имеют общую вершину. Стороны многоугольника, не имеющие общей вершины, называют несоседними. Например, стороны и — соседние, a и — несоседние (рис. 213).

Две вершины многоугольника называют соседними, если они принадлежат одной стороне, а вершины многоугольника, не принадлежащие одной стороне, называют несоседними.

Например, вершины и — соседние, и — несоседние (рис. 213).

Отрезок, соединяющий две несоседние вершины многоугольника, называют диагональю многоугольника. На рисунке 214 изображены диагонали многоугольника выходящие из вершины

Пример №4

Сколько диагоналей имеет угольник?

Решение:

Из каждой вершины угольника выходит диагонали. Всего вершин а каждая диагональ повторяется дважды, например и Поэтому всего диагоналей у угольника будет

Ответ.

Углы, стороны которых содержат соседние стороны многоугольника, называют углами многоугольника. Пятиугольник имеет углы

Если каждый из углов многоугольника меньше развернутого, то такой многоугольник называют выпуклым. Если хотя бы один угол многоугольника больше развернутого, то такой многоугольник называют невыпуклым.

Многоугольник — выпуклый (рис. 215), а многоугольник — невыпуклый (рис. 216), так как угол при вершине больше чем 180°.

Теорема (о сумме углов выпуклого угольника). Сумма углов выпуклого угольника равна

Доказательство:

Выберем во внутренней области многоугольника произвольную точку и соединим ее со всеми вершинами угольника (рис. 217). Получим треугольников, сумма всех углов которых равна Сумма углов с вершиной в точке равна Сумма углов данного угольника равна сумме углов всех треугольников, кроме углов с вершиной в точке то есть:

Углы выпуклого многоугольника называют еще его внутренними углами. Угол, смежный с внутренним углом многоугольника, называют внешним углом многоугольника. На рисунке 218 угол — внешний угол многоугольника — при вершине

Очевидно, что каждый многоугольник имеет по два внешних угла при каждой вершине.

Пример №5

Докажите, что сумма внешних углов выпуклого угольника, взятых по одному при каждой вершине, равна 360°.

Решение:

Сумма внутреннего и внешнего углов при каждой вершине многоугольника равна 180°. Поэтому сумма всех внутренних и внешних углов угольника равна Так как сумма внутренних углов равна то сумма внешних углов равна:

Многоугольник называют вписанным в окружность, если все его вершины лежат на окружности. Окружность при этом называют описанной около многоугольника (рис. 219).

Около многоугольника не всегда можно описать окружность. Если же это возможно, то центром такой окружности является точка пересечения серединных перпендикуляров к сторонам многоугольника (как и в случае треугольника).

Многоугольник называют описанным около окружности, если все его стороны касаются окружности. Окружность при этом называют вписанной в многоугольник (рис. 220).

Не в каждый многоугольник можно вписать окружность. Если же это возможно, то центром такой окружности является точка пересечения биссектрис внутренних углов многоугольника (как и в случае треугольника).

Многоугольник и его свойства

Вы уже знаете, что такое треугольник и четырёхугольник. Более общим является понятие многоугольника. На рисунке 327 вы видите многоугольник ABCDEF. Он состоит из отрезков АВ, ВС, CD, DE, EFy FA, размещённых таким образом, что смежные отрезки не лежат на одной прямой, а несмежные -не имеют общих точек. Отрезки, из которых состоит многоугольник, называются его сторонами, углы, образованные смежными сторонами, — углами, а вершины этих углов — вершинами многоугольника.

В зависимости от количества вершин (углов либо сторон) многоугольник называется треугольником, четырёхугольником, пятиугольником и т. д. Многоугольник с n вершинами называется n-угольником.

Многоугольник обозначают названиями его вершин, например шестиугольник ABCDEF (рис. 327), пятиугольник (рис. 328). ? | На рисунке 329 вы видите многоугольники . В чём их различие?

Ни одна из прямых, проходящих через стороны многоугольника не пересекает другие его стороны. Он лежит по одну сторону от любой из этих прямых. Такой многоугольник называется выпуклым. Многоугольник не является выпуклым.

В дальнейшем мы будем рассматривать лишь выпуклые многоугольники.

Периметром многоугольника называется сумма длин всех его сторон. Его обозначают буквой Р.

Посмотрите на рисунок 330. В шестиугольнике ABCDEF отрезки AC, AD, АЕ соединяют вершину А с несоседними вершинами. Это — диагонали шестиугольника.

Диагональю n-угольника называется отрезок, который соединяет две несоседние его вершины.

Теорема (о сумме углов n-угольника).

Сумма углов n-угольника равна 180° • (n — 2).

Дано: — n-угольник (рис. 331), — диагонали. Доказать:

Доказательство. В заданном n-угольнике диагонали выходят из одной вершины Поэтому они разбивают n-угольник на n — 2 треугольников. Сумма всех углов образованных треугольников равна сумме углов данного n-угольника. Поскольку в каждом треугольнике сумма углов равна 180°, то сумма углов данного n-угольника — 180° • (n — 2).

Угол, смежный с углом многоугольника (рис. 332), называется внешним углом многоугольника.

Многоугольники могут быть вписанными в окружность (рис. 333) или описанными около окружности (рис. 334). Попытайтесь дать определения и сравните их с указанными в учебнике.

Многоугольник все вершины которого лежат на окружности, называется вписанным, в эту окружность, а окружность — описанной около этого многоугольника.

Многоугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот многоугольник.

Стороны вписанного многоугольника и его диагонали — это хорды окружности. Каждый его угол является вписанным углом (рис. 335).

Стороны описанного многоугольника являются касательными к окружности, а его диагонали — секущими (рис. 336).

1. Геометрическая фигура называется простой, если её можно разбить на конечное количество треугольников. Многоугольник — это простая фигура (см. рис. 330 и 331), а окружность не является простой фигурой (рис. 337). Даже вписав в окружность многоугольник с очень большим количеством сторон, мы только приблизим его контур к окружности. Поэтому в геометрии длину окружности и площадь круга находят другими методами, чем периметр и площадь многоугольника.

2. У вас может возникнуть вопрос: Всегда ли из равенства сторон многоугольника следует равенство его углов и наоборот? Нет, это свойство лишь треугольника. Вы знаете пример четырёхугольника, в котором все стороны равны, а углы — не равны. Это ромб. В прямоугольнике все углы равны, а вот стороны — нет. Среди многоугольников с большим количеством вершин также можно выделить равносторонние многоугольники, в которых не все углы равны (рис. 338), и равноугольные многоугольники, в которых не все стороны равны

Понятие площади

Многоугольник разбивает плоскость на две области — внутреннюю (рис. 345) и внешнюю (рис. 346).

Многоугольник вместе с его внутренней областью называется плоским многоугольником.

Каждый плоский многоугольник (например, многоугольник F на рис. 347) занимает часть плоскости. Если эту часть плоскости выразить некоторым числом, то получим площадь многоугольника. Далее будем говорить «площадь многоугольника», имея в виду, что многоугольник -плоский. Это относится и к другим плоским фигурам.

Площадь обозначают буквой S. Иногда указывают название фигуры, например , а для нескольких фигур — индексы, например и т. д.

На рисунке 348 фигуры равны, поскольку совмещаются наложением. Понятно, что они имеют равные площади. Можем записать: . Для измерения площади фигуры выбирают единицу измерения. Для этого используют квадрат, со стороной равной единице измерения длины. Площадь квадрата со стороной 1 см — это единица измерения площади в квадратных сантиметрах, со стороной 1 м — в квадратных метрах и т. д.

Единицы измерения площади кратко записываем так: 1 см2, а говорим: «один квадратный сантиметр». Говорить «сантиметр в квадрате» -неправильно!

Некоторые единицы измерения площади имеют специальные названия: ар (квадрат со стороной 10м), гектар (квадрат со стороной 100 м) и т. д.

На рисунке 349 вы видите квадрат ABCD со стороной 2 см. Он состоит из четырёх квадратов площадью 1 см2, поэтому его площадь равна 4 см2.

Можем записать:

Ясно, что площадь любой фигуры выражается положительным числом. Изменится ли площадь квадрата ABCD, если за единицу измерения принять 1 мм2? Нет, площадь квадрата не изменится, но будет выражена иначе:

На рисунке 350 длина стороны квадрата KLMN равна 2,5 см. Он вмещает четыре квадрата площадью 1 см2 и ещё 9 маленьких квадратов площадью 0,25 см2. Поэтому = 4 + 9 • 0,25 = 6,25 (см2).

Ясно, что площадь любой фигуры равна сумме площадей частей, из которых она состоит.

Из предыдущих классов вы знаете, что площадь квадрата со стороной а можно вычислить иначе — по формуле площади квадрата:

Для квадратов ABCD и KLMN получим:

Поскольку 4 см2

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Как найти площадь фигуры

О чем эта статья:

Обозначение площади

Площадь — это одна из характеристик замкнутой геометрической фигуры, которая дает нам информацию о ее размере. S (square) — знак площади.

Если параметры фигуры переданы в разных единицах измерения длины, мы не сможем решить ни одну задачу. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения площади:

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Круг — это множество точек на плоскости, ограниченных окружностью, удаленных от центра на равном радиусу расстоянии. Радиусом принято называть отрезок, соединяющий центр с любой точкой окружности.

S = π × r 2 , где r — это радиус, π — это константа, которая равна отношению длины окружности к диаметру, она всегда равна 3,14.

S = &pi × d 2 : 4;, где d — это диаметр.

S = L 2 ​ : (4 × π), где L — это длина окружности.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Треугольник

Треугольник — это геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой, соединенных тремя отрезками. Эти три точки принято называть вершинами, а отрезки — сторонами. Рассчитать площадь треугольника можно несколькими способами по исходными данным, давайте их рассмотрим.

1. Если известна сторона и высота.

S = 0,5 × a × h, где a — длина основания, h — высота, проведенная к основанию.

Основание может быть расположено иначе, например так:

При тупом угле высоту можно отразить на продолжение основания:

При прямом угле основанием и высотой будут его катеты:

2. Если известны две стороны и синус угла.

S = 0,5 × a × b * sinα, где a и b — две стороны, sinα — синус угла между ними.

3. Если есть радиус описанной окружности.

S = (a × b × с) : (4 × R), где a, b и с — стороны треугольника, а R — радиус описанной окружности.

4. Если есть радиус вписанной окружности.

S = p × r, где р — полупериметр треугольника, r — радиус вписанной окружности.

Прямоугольник

Прямоугольник — это параллелограмм, у которого все углы прямые. Узнать площадь прямоугольника помогут следующие формулы:

S = a × b, где a, b — длина и ширина прямоугольника.

S = a × √(d 2 — а 2 ), где а — известная сторона, d — диагональ.

Диагональ — это отрезок, который соединяет вершины противоположных углов. Она есть во всех фигурах, число вершин которых больше трех.

S = 0,5 × d 2 × 𝑠𝑖𝑛(𝑎), где d — диагональ, α — угол между диагоналями.

Квадрат

Квадрат — это тот же прямоугольник, но при условии, что все его стороны равны. Найти его площадь легко:

S = а 2 , где a — сторона квадрата.

S = d 2 : 2, где d — диагональ.

Трапеция

Трапеция — это четырехугольник, у которого две стороны параллельны и две не параллельны.

S = 0,5 × (a + b) × h, где a, b — два разных основания, h — высота трапеции.

Построить высоту трапеции можно, начертив отрезок так, чтобы он соединил параллельные стороны под прямым углом.

Параллелограмм и ромб

Параллелограмм — четырехугольник, противоположные стороны которого попарно параллельны.

Ромб — это параллелограмм, у которого все стороны равны.

Расскажем про общие формулы расчета площади этих фигур.

S = a × h, где a — сторона, h — высота.

S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.

Для ромба: S = 0,5 × (d1 × d2), где d1, d2 — две диагонали. Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.


источники:

http://www.evkova.org/mnogougolnik

http://skysmart.ru/articles/mathematic/ploshad-figury